
 

Supplementary File 1 for “More Research Needed: There is a Robust Causal vs. Confounding 

Problem for Intelligence-associated Polygenic Scores in Context to Admixed American 

Populations”:  

 

1. Psychometric Assessment of the Penn Computerized Neurocognitive Battery 
 

The 14 PCNB subtests were designed to measure five broad behavioral domains: Executive 

Control, Episodic Memory, Complex Cognition, Social Cognition, and Sensorimotor Speed. The 

subtests are as follows:  1. Executive Control: Penn Conditional Exclusion Test (PCET; meant to 

assess Mental Flexibility), Penn Continuous Performance Test (PCPT; Attention), and Letter N-

Back Task (LNB; Working Memory); 2. Episodic Memory: Penn Word Memory Task (PWMT; 

Verbal Memory), Penn Face Memory Task (PFMT; Face Memory), and Visual Object Learning 

Test (VOLT; Spatial Memory); 3. Complex Cognition: Penn Verbal Reasoning Test (PVRT; 

Language Reasoning), Penn Matrix Reasoning Test (PMRT; Nonverbal Reasoning), and Penn 

Line Orientation Test (PLOT; Spatial Ability); 4. Social Cognition: Penn Emotion Identification 

Test (PEIT; Emotion Identification), Penn Emotion Differentiation Test (PEDT; Emotion 

Differentiation), and Penn Age Differentiation Test (PADT; Age Differentiation). 5. Sensorimotor 

Speed: Motor Praxis Test (MP; Sensorimotor Speed), and Finger Tapping (Tap; Sensorimotor 

Speed) (Lasker et al., 2019). Participants additionally completed the Wide Range Achievement 

Test (WRAT), a highly-reliable broad ability measure (Moore et al., 2015). 

We excluded the approximately 1.5% of individuals for whom data were missing for at 

least half the tests. We then imputed values for the remaining cases using IRMI (iterative robust 

model-based imputation; Templ, Kowarik, & Filzmoser. 2011; Templ, Kowarik, Alfons, & 

Prantner, 2019). The effects of age and sex on subtest scores have previously been detailed (Gur 

et al., 2012; Roalf et al., 2014). To handle non-linear effects, we residualized the subtest variables 



 

for age and sex using a natural (i.e., restricted cubic) spline model before performing factor 

analysis.  

We ran both exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). 

The model with Social Cognition and the Sensorimotor Speed factors exhibited a lack of indicator 

coherence and did not converge. As such, we removed the five subtests related to these two factors 

and ran EFA/CFA for the 10 remaining ones. A model, based on the remaining tests, with Complex 

Cognition, Executive Control, and Episodic Memory factors as specified by Moore et al.’s (2015) 

five factor model also did not converge. However, we identified a similar three factor model (with 

analogous Executive Control, Episodic Memory, Complex Cognition broad factors), which had 

good fit among European and Hispanic Americans. This is shown in Figure S1.  

Figure S1. Three Factor Model for the Penn Cognitive Battery. 



 

 

This same bifactor model also had a good fit among European and African Americans. To 

ensure that the measure was unbiased between our major ethnic groups, we performed Multi-group 

confirmatory factor analyses (MGCFA) to determine if Measurement Invariance (MI) held for 

European and African Americans and for the European and Hispanic Americans (Dolan & 

Hamaker, 2001; Lubke, Dolan, Kelderman, & Mellenbergh, 2003). Results for European and 

African Americans were not interpretively different from those reported by Lasker et al. (2019), 

despite, in this case, using Full Information Maximum Likelihood (FIML) instead of listwise 

deletion to handle missing subtest scores. Results for European and Hispanic Americans are 

discussed below.  

2. Assessment of Measurement Invariance  

 



 

 Multi-group confirmatory factor analysis (MGCFA) is a technique often used to assess 

the measurement invariance (MI) of different psychological assessments including intelligence 

tests (Dolan, 2000; Dolan & Hamaker, 2001; Lubke, Dolan & Kelderman, 2001; Frisby & 

Beaujean, 2015). When MI holds, the assessment being examined is generally considered 

unbiased in the groups being compared. Resultantly, MI is taken to imply that the constructs 

measured in both groups are alike. MI is assessed by fitting a series of increasingly restrictive 

models and analyzing model fit at each step (van de Schoot, Lugtig & Hox, 2012). We assessed 

MI for Hispanic and European American comparisons with the Penn Computerized 

Neurocognitive Battery (PCNB).  

Model fit was assessed with multiple indices. We adopted the same procedure, model, 

and criteria as in Lasker, Pesta, Fuerst, & Kirkegaard (2019), who examined MI for non-

Hispanic European Americans and non-Hispanic African Americans. Specifically, for assessing 

measurement invariance, we adopted Cheung and Rensvold’s (2002) and Chen’s (2007) 

frequently accepted criteria. Specifically, we regarded a ΔCFI of greater than -0.01, a ΔMc 

greater than -0.02, and a ΔRMSEA greater than 0.01 as evidence that measurement invariance 

was untenable. See Putnick & Bornstein (2016) for a review of common conventional criteria.  

 For this analysis, we ran MGCFA on the set of individuals with sufficient cognitive data 

for imputation (506 Hispanic and 4,914 European Americans) without limiting the analysis to 

only those who passed quality controls for computing genetic ancestry. This set includes 

individuals with imputed subtest scores (when fewer than half of the subtests were missing). Our 

results are presented in tables S1-S3 and the lavaan model syntax is provided at the end of this 

supplement. 



 

Table S1. Bifactor Solution for Hispanic and European Americans on the Philadelphia 

Computerized Neurocognitive Battery.     

Model MI Step χ2  Df CFI ΔCFI  RMSEA ΔRMSEA Mc ΔMc SRMR 

1 Configural 115.45 48 0.992 - 0.023 - 0.994 - 0.013 

2 Metric 135.60 65 0.991 -0.001 0.020 -0.003 0.994 0 0.015 

3 Scalar 171.63 71 0.988 -0.003 0.023 0.003 0.991 -0.003 0.017 

4 Strict 252.43 81 0.979 -0.009 0.028 0.005 0.984 -0.007 0.020 

5 Latent Variances 252.43 81 0.979 0 0.028 0 0.984 0 0.020 

6 Means 376.71 85 0.964 -0.015 0.036 0.008 0.973 0.011 0.029 

5a Strong 268.94 84 0.977 -0.002 0.029 0.001 0.983 -0.001 0.021 

5b Weak 254.38 82 0.979 0 0.028 0 0.984 0 0.021 

5c Contra 374.09 83 0.964 -0.015 0.036 0.008 0.974 -0.010 0.029 

Note: Combined N = 5,420, with 506 Hispanic Americans and 4,914 European Americans. The latent 

variance model merely changes the identification constraint to the variances from a single loading for each modeled 

factor. 

In Table S1, Models 5a to 5c further assess Spearman's hypothesis (Jensen, 1998; Frisby 

& Beaujean, 2015), which is more fully discussed by Lasker et al. (2019).  The strong model (5a) 

leaves only g to vary between groups. The weak model (5b) leaves g to vary and constrains 

complex cognition; it should be noted that it was possible to constrain any set of the broad 

factors without a meaningful decrease in model fit (ΔCFI for weak models ranged from 0 to -

0.001 out of all six possible models). The contra model (5c) constrains g and carries the broad 

factor constraints from the weak model. Contra model fits were always worse (approximately 

and absolutely) than the fits of comparable weak models (ΔCFI ranged from -0.005 to -0.015). 

5a-c are each compared to model 5. Neither the strong nor weak model fits worse than the model 

with latent variances constrained in terms of approximate fit; however, using a χ2 test, the weak 

model does not fit worse while the strong model does (like the contra model). The fit for the 

chosen contra model could be rejected with a ΔCFI of <-0.01 accompanied by a notably elevated 

χ2.  These results tentatively support either the weak or strong model over the contra model with 

approximate fits and absolutely support the weak model with a χ2 test.     

Tables S2 and S3 show, respectively, the standardized mean differences based on the 

model with constrained latent variances and the weak Spearman’s hypothesis model. In the weak 



 

Spearman’s hypothesis model, the European-Hispanic American difference in g is 0.668 Hedge’s 

g (positive values favor European Americans and vice-versa). There are also small to moderate 

differences in executive functioning (Hedge’s g = -0.342) and episodic memory (Hedge’s g = -

0.234) net of g which favor Hispanics. In the contra or baseline models, broad factors more 

strongly favor European Americans, as the differences associated with g in the latent variances 

or weak models are distributed among the other factors in the absence of g.  

The values of ωh and ωt for this battery were 0.69 and 0.77 respectively; 90% of the 

reliable variance was thus attributable to g. The ECV for g was 70%, PUC was 0.78, and H was 

0.76, with these values being uniformly too low for complex cognition (ECV = 9%, H = 0.27), 

executive functioning (9%, 0.24%), and episodic memory (12%, 0.31). Using the method from 

Dolan (2001), in the latent variances model, an average of 67% of the between-group differences 

were accounted for by g; 65% of the differences in the indicators for complex cognition, 62% for 

executive functioning, and 58% for episodic memory.  

In the selected weak Spearman’s hypothesis model, 73% of the group differences are 

accounted for by g and the proportion of the differences in the indicators for executive 

functioning were unchanged. The correlation between the vector of group differences and the 

vector of g loadings is r = 0.524. This same correlation for the complex cognition, executive 

functioning, and episodic memory loadings are, respectively, r = -0.420, r = 0.113, r = -0.198, 

and overall, r = -0.159. Values for Mardia’s b1p and b2p were 16.403 and 132.853 (Mardia, 

1980).  

Table S2. Factor Score Differences between Hispanic and European Americans based on the 

Model with Constrained Latent Variances. 

Factor Estimate SE Lower 95% CI Upper 95% CI 

 

G 

 

0.614 

 

0.071 

 

0.474 

 

0.754 

     



 

Complex 

Cognition 

0.123 0.088 -0.049 0.296 

 

Executive 

Functioning 

 

-0.259 

 

0.126 

 

-0.506 

 

-0.012 

     

 

Episodic Memory 

 

-0.192 

 

0.078 

 

-0.344 

 

-0.040 

  Note: Positive values indicate higher European American scores and vice-versa. Estimates are in terms of 

Hedge’s g. Combined N = 5,454 with 515 Hispanic Americans and 4,939 European Americans. 

Table S3. Factor Score Differences between Hispanic and European Americans based on the 

Weak Spearman’s Hypothesis Model. 

Factor Estimate SE Lower 95% CI Upper 95% CI 

 

G 

 

0.668 

 

0.064 

 

0.543 

 

0.793 

 

Complex 

Cognition 

 

0 

 

- 

 

- 

 

- 

 

Executive 

Functioning 

 

-0.342 

 

0.124 

 

-0.585 

 

-0.099 

 

Episodic 

Memory 

 

-0.234 

 

0.075 

 

-0.382 

 

-0.087 

  Note: Positive values indicate higher European American scores and vice-versa. Estimates are in terms of 

Hedge’s g. Combined N = 5,454 with 515 Hispanic Americans and 4,939 European Americans. 

Generally, full factorial invariance held (by the conventional metrics cited above). 

Additionally, the weak form of Spearman’s hypothesis (Jensen, 1998), in which g accounts for the 

majority of variance in subtest scores, did not fit worse than baseline. In this model, 67-73% of the 

between-group differences are accounted for by g (model depending). In contrast, the contra 

models, in which the majority of subtest score differences were not attributable to g, and, arguably, 

the strong model, in which g accounts for all of variance in subtest scores, fit worse. Since it is 

often difficult to distinguish between Spearman Hypothesis models (e.g., strong vs. various forms 

of weak SH), and since the magnitude of g differences depends on the specification, for 

replicability and less dependence on researcher choice, we used g-scores from the exploratory 

factor analysis. These correlated at r = .97 with scores from the MGCFA model above. 



 

3. Assessment of Age Effects  
 

 As there was a relatively wide age range (8 to 22 years), on a reader’s request, we 

additionally investigated the validity of these scores across age groups. To do this we used 

parental education as a predictor and g-scores as the criterion. We used education as a predictor, 

since this variable is a known correlate of g, eduPGS, and genetic ancestry, and also since most 

cases had this variable. For this analysis, we limited the analytic sample to those with ancestry, g, 

and education. In Figure S2, we show the regression plot for parental education and g by age 

group, with participants grouped into three age distributions (for purposes of illustration). As is 

evident, age grouping has little effect. Moreover, in a regression model with parental education 

predicting g, the interaction term for age had a trivial, albeit statistically significant, effect (ß = 

=.008; p = .006; N =  7,846), likely due to the large sample size. Generally, parental education 

predicts g-scores more or less equally well across the age distribution, suggesting that our natural 

spline model effectively captured the age-related effects on subtests. 

Figure S2. Regression Plot for Parental Education and g by Three Age Groups.  

 



 

  Means and standard deviations for g and the subtests are presented in Table S4. These 

(also including results for the five psychometrically biased subtests) are provided for the four 

main groups.  

Table S4. General Intelligence (g) and Subtest Means and Standard Deviations for European 

(EA), European-African (EA-AA), African (AA), and Hispanic (HI) Americans. 

______________________________________________________________________________ 

 EA  EA-AA  AA  HI  

g 0.00 1.01 -0.14 1.05 -1.01 1.07 -0.57 1.13 

PLOT* -0.01 1.00 -0.22 0.96 -0.71 0.96 -0.36 1.04 

PCPT* 0.00 1.00 -0.04 1.03 -0.33 1.16 -0.26 1.26 

PCET* 0.00 1.00 0.03 0.97 -0.45 1.08 -0.26 1.08 

LNB* 0.00 1.00 -0.02 0.98 -0.47 1.18 -0.29 1.12 

VOLT* 0.00 1.00 -0.09 0.96 -0.35 1.11 -0.27 1.06 

TAP 0.00 1.00 0.04 1.07 -0.07 1.06 0.02 0.98 

PMRT* 0.01 1.00 -0.06 1.05 -0.56 0.94 -0.25 0.98 

MP 0.00 1.00 -0.16 1.10 -0.11 1.04 -0.07 1.18 

PEDT 0.00 1.01 -0.06 0.95 -0.15 1.16 -0.15 1.09 

PVRT* 0.00 1.00 -0.15 1.07 -0.98 1.13 -0.58 1.18 

PEIT -0.01 1.01 -0.02 1.07 -0.05 1.10 0.02 1.02 

PFMT* -0.01 1.00 0.10 1.03 -0.04 1.08 0.06 1.04 

PADT 0.00 1.01 -0.06 0.93 0.00 1.12 -0.06 1.02 

PWMT* 0.00 1.01 0.07 1.03 -0.17 1.23 -0.11 1.16 

WRAT* 0.00 1.00 -0.13 1.08 -0.85 0.95 -0.48 1.05 

______________________________________________________________________________ 

Note: *Denotes that the subtests were used in computing g scores. 

 

4. Subtest Means and Standard Deviations by Hispanic Subgroup 

 



 

 We additionally provide the means and standard deviations for the subtests by Hispanic 

subgroup, though these are not used in any analyses. Scores for all 15 subtests are provided in 

Table S5, with an asterisk placed next to the 10 for which measurement invariance was found to 

hold.  

Table S5. Subtest Means and Standard Deviations by Hispanic Subgroup. 
_____________________________________________________________________________________________ 

           

 HI  HI_EA  HI_AA  HI_OT Other  

g -0.57 1.13 -0.33 1.17 -0.84 0.98 -0.65 1.17 -0.39 1.13 

PLOT* -0.36 1.04 -0.17 1.05 -0.62 1.03 -0.40 1.03 -0.21 0.98 

PCPT* -0.26 1.26 -0.19 1.14 -0.29 1.32 -0.46 1.38 -0.46 1.17 

PCET* -0.26 1.08 -0.25 1.12 -0.43 1.04 -0.25 1.06 -0.09 1.08 

LNB* -0.29 1.12 -0.23 1.12 -0.42 1.19 -0.33 0.99 -0.15 1.13 

VOLT* -0.27 1.06 -0.08 1.00 -0.51 1.09 -0.33 1.10 -0.12 0.99 

TAP 0.02 0.98 0.14 0.96 0.07 0.91 -0.07 1.09 -0.05 0.97 

PMRT* -0.25 0.98 -0.13 1.02 -0.39 0.89 -0.25 1.00 -0.22 1.02 

MP -0.07 1.18 -0.02 1.17 0.05 0.83 -0.31 1.65 -0.02 0.99 

PEDT -0.15 1.09 0.02 1.15 -0.21 1.17 -0.25 1.06 -0.13 0.95 

PVRT* -0.58 1.18 -0.35 1.23 -0.74 1.14 -0.67 1.28 -0.52 1.06 

PEIT 0.02 1.02 -0.10 1.13 -0.01 0.91 0.12 1.13 0.08 0.91 

PFMT* 0.06 1.04 -0.03 1.02 -0.02 1.03 0.32 0.98 -0.01 1.09 

PADT -0.06 1.02 0.03 1.04 -0.13 1.11 -0.09 1.00 -0.02 0.92 

PWMT* -0.11 1.16 0.06 0.99 -0.09 1.00 -0.37 1.47 -0.03 1.12 

WRAT* -0.48 1.05 -0.34 1.01 -0.75 1.04 -0.52 1.01 -0.25 1.07 

_____________________________________________________________________________________________
Note: *Denotes the subtests, from the 10-subtest measurement invariant model, used to compute g scores. HI_EA = 

Hispanic European, HI_AA = Hispanic African, HI_EA = Hispanic Other, and Other = any other also with 

Hispanic ethnicity marked. 
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Model Syntax : 

F1 =~ WRAT + PVRT + PMAT 

F2 =~ PMAT + PCET + VOLT + PLOT 

F3 =~ VOLT + PWMT + PFMT + LNB 

https://doi.org/10.3390/psych1010034
https://doi.org/10.1016/S0169-7161(80)01011-5


 

g =~ WRAT + PVRT + PMAT + PCET + VOLT + PLOT + LNB + PWMT + PFMT + PCPT 

 



Supplementary File 2 for “More Research Needed: There is a Robust Causal vs. Confounding 

Problem for Intelligence-associated Polygenic Scores in Context to Admixed American 

Populations”:  

1.  Detailed Discussion of the Color Variable. 

We calculated phenotypic scores from genotypic data. We imputed phenotype based on 

genotype using the HIrisPlex-S web application (https://hirisplex.erasmusmc.nl/). HIrisPlex-S 

gives probabilities of The Fitzpatrick Scale skin type, which range from Type I “palest; freckles” 

to Type VI “deeply pigmented dark brown to darkest brown”. The Fitzpatrick Scale skin types 

correspond with scores on Von Luschan's chromatic scale. For example, a Fitzpatrick Scale Type 

I classification corresponds with a Von Luschan's chromatic scale score of 0–6. This 

correspondence allowed us to transform the HIrisPlex-S skin type probabilities into a single, 

color measure. This was done by weighting the median score of each color type by the 

HIrisPlex-S predicted probability of each type. Owing to poor tagging of SNPs in the arrays, it 

was possible to compute color scores for only 3,862 European, 166 European-African, 1,557 

African, and 398 Hispanic Americans. 

The correlation between skin color and European ancestry for the combined sample was r 

= -.87 (N = 6,050), as shown in Figure S1. For Hispanics alone, the correlation was r = -.67 (N = 

398), as shown in Figure S2. Note, the expected correlations are population specific, owing to 

differences in admixture range, admixture components, assortative mating, etc. (Kim, Edge, 

Goldberg, & Rosenberg, 2019). In this case, the estimate found for Philadelphian Hispanics is 

similar to those reported by others for similar populations (e.g., Puerto Rican: rho = .63; Parra, 

Kittles, & Shriver, 2004; R-square = .417 / r = .65; Bonilla, Shriver, Parra, Jones, & Fernández, 

2004).  

https://hirisplex.erasmusmc.nl/


For the African American only (monoracial) sample, we are not aware of a directly 

comparable Philadelphia sample. However, previously, Scarr, Pakstis, Katz, & Barker (1977) 

reported a correlation of r = 0.21 and 0.27, respectively, between skin color and their ancestral 

and sample odds indexes of African ancestry, based on blood groups, in an African American 

sample. However, their ancestry-index likely had a reduced validity of around 50% (Jensen, 

1982; Lasker et al. 2019). The corrected correlation would be around r = .4 to .5. This is similar 

to the relation found in a somewhat comparable sample (i.e., African Americans from 

Washington, D.C.: rs = .44; Parra, Kittles, & Shriver, 2004). And both of these are comparable to 

the r = .39 we found for Philadelphian monoracial African Americans, so it is likely that our 

color estimates are reasonably precise. 

Consistent with observations previously reported (e.g., Bonilla et al., 2004), the mean 

score for Hispanics was 22.19 which is intermediate to Type III (sometimes mild burn, tans 

uniformly) and Type IV (burns minimally, always tans well, moderate brown). Moreover, 

Hispanics who identified as European had a color score of 19.45, which was significantly darker 

than that for non-Hispanic European Americans at 14.70 (t (3,940) = 10.645). And, Hispanics 

who identified as African had a color score of 28.45, which was significantly lighter than that for 

non-Hispanic African Americans at 30.96 (t (1,671) = -4.393). Generally, these color values are 

consistent with known population values.  

Figure S1. Regression Plot of the Relation Between Color (with Higher Values indicating Darker 

Color) and European Genetic Ancestry in the Combined Sample.  



 

Figure S2. Regression Plot of the Relation Between Color (with Higher Values indicating Darker 

Color) and European Genetic Ancestry Among Hispanics. 
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Supplementary File 3 for “More Research Needed: There is a Robust Causal vs. Confounding 

Problem for Intelligence-associated Polygenic Scores in Context to Admixed American 

Populations”:  

1. Bivariate Relationships Among the Variables for the Hispanic and for the Combined 

Group 

The bivariate correlations allow comparison with effects sizes for the association between 

ancestry and SES reported previously (e.g., Kirkegaard, Wang, & Fuerst, 2017). Table S1 shows 

the correlations for Hispanics. Consistent with having a predominantly Puerto Rican sample 

(e.g., Via et al., 2011), Amerindian ancestry was only weakly (negatively) correlated with 

European ancestry. Cognitive ability and parental education were positively related to European 

ancestry; negatively related to African ancestry, and unrelated to Amerindian ancestry. Notably, 

the correlations between cognitive ability, parental education, and European and African 

ancestry are higher than reported by Lasker et al. (2019) for their monoracial African American 

sample. This is likely due to the greater variance in admixture among Hispanics in this sample 

(SDEuropean = 29%). The correlation between European ancestry and parental education in this 

sample was also higher than that reported for European ancestry and socioeconomic status 

among Puerto Ricans (r = .16, K = 3, N = 1,943; Kirkegaard, Wang, & Fuerst, 2017).  

Table S1. Pairwise Correlations among Self-Identified Hispanic-Americans.  

 
Cognitive 

Ability 

Parental 

Education 

Euro. 

Ancestry 

Afr. 

Ancestry 

Amer. 

Ancestry 

SIRE 

European  
Color EduPGS 

Cognitive 

Ability 

1 

(506) 

       

Parental  

Education 

.287* 

(500) 

1 

(507) 

      

European 

Ancestry 

.300* 

(506) 

.239* 

(507) 

1 

(515) 

     

African 

Ancestry 

-.294* 

(506) 

-.210* 

(507) 

-.874* 

(515) 

1 

(515) 

    



Amerindian 

Ancestry 

.015 

(506) 

-.035 

(507) 

-.160* 

(515) 

-.340* 

(515) 

1 

(515) 

   

SIRE: 

European  

.199* 

(506) 

 

.223* 

(507) 

.643* 

(515) 

-.544* 

(515) 

-.139* 

(515) 

1 

(515) 

  

Color 
-.161* 

(391) 

-.077 

(392) 

-.670* 

(398) 

.637* 

(398) 

-.009 

(398) 

-.409* 

(398) 

1  

(398) 

 

EduPGS 
.293* 

(506) 

.330* 

(507) 

.557* 

(515) 

-.544* 

(515) 

.027 

(515) 

.355* 

(515) 

-.385* 

(398) 

1 

(515) 

Note: *Significant at p < 0.01. Pairwise N in parentheses; EduPGS = MTAG 10k EduPGS. 

Table S2 additionally shows the correlations for the combined group. As expected, the 

correlations for European ancestry are higher in the combined sample, since there is greater 

variability. The correlation between European ancestry and parental education was also higher 

than that between European ancestry and SES (r = .17, K = 15, N = 15,980.50; Kirkegaard, 

Wang, and Fuerst, 2017) previously reported for multi-ethnic and/or unspecified North and Latin 

American samples. This may again be due to this sample’s higher variability in ancestry. 

Table S2. Pairwise Correlations among all participants in this sample. 

 
Cognitive 

Ability 

Parental  

Education 

Euro. 

Ancestry 

Afr. 

Ancestry 

Amer. 

Ancestry 

SIRE 

European  
Color EduPGS 

Cognitive 

Ability 

1 

(7,920) 

       

Parental  

Education 

.401** 

(7,846) 

1 

(7,846) 

      

European 

Ancestry 

.405** 

(7,920) 

.403** 

(7,921) 

1 

(8,009) 

     

African 

Ancestry 

-.406** 

(7,920) 

-.400** 

(7,921) 

-.988** 

(8,009) 

1 

(8,009) 

    

Amerindian 

Ancestry 

-.025* 

(7,920) 

-.047** 

(7,921) 

-.150** 

(8,009) 

-.003 

(8,009) 

1 

(8,009) 

   

SIRE: 

European  

.396** 

(7,920) 

.405** 

(7,921) 

.938** 

(8,009) 

-.930** 

(8,009) 

-.124** 

(8,009) 

1  

(8,009) 

  



Color 
-.350** 

(5,991) 

-.341** 

(5,989) 

-.865** 

(6,050) 

.859** 

(6,050) 

.102** 

(6,050) 

-.806** 

(6,050) 

1 

(6,050) 

 

EduPGS 
.399** 

(7,920) 

.442** 

(7,921) 

.667**  

(8,009) 

-.666** 

(8,009) 

-.058** 

(8,009) 

.629** 

(8,009) 

-.603** 

(6,050) 

1  

(8,009) 

 

Note: **Values are significant at p < 0.0001; *values are significant at p < 0.05. Pairwise N in parentheses; EduPGS 

= MTAG 10k EduPGS. 

 

 

2. Cognitive Ability, Parental Education, and Education-related PGS (eduPGS) by SIRE 

Group 

We next report bivariate associations between cognitive ability, parental education, and 

four eduPGS from Lee et al. (2018). Hispanic results appear in Table S3. And the results for 

European, Europe-African, and African Americans are shown in Tables S4 to S6. In the 

Hispanic-only sample, all but the putatively causal eduSNPs were significantly associated with 

cognitive ability. Moreover, there were no statistically significant differences in the magnitudes 

of the correlations between Hispanic and European Americans for the putative causal eduPGS, 

the GWAS eduPGS, and the MTAG 10K PGS. However, the MTAG-lead PGS were 

significantly more predictive for Hispanics (z = 2.11, two-tail-p = 0.0349). In the case of GWAS 

eduPGS, the lack of difference in predictivity is somewhat surprising, since this is predicted to 

show high LD decay, and thus relatively low predictivity in non-European samples. However, it 

is possible that the association is spuriously high in the Hispanic sample owing to confounding 

with genetic ancestry. Among both European and European-African Americans, all eduPGS 

were significantly predictive of g. Since the European-African group was 79% European in 

ancestry, the effect of LD decay may have been minimal. For African Americans, in contrast, the 

validities were markedly reduced (e.g., MTAG 10k: rEuropean =  .227 vs. rAfrican = .112). This is 

consistent with the general finding of reduced PGS validity among Afro-descent groups (Duncan 

et al., 2019).  



Table S3. Pairwise Correlations Between Cognitive Ability and Education/Intelligence 

Related Polygenic Scores among Hispanic-Americans. 

 
Cognitive 

Ability 

Parental 

Education 

Putative 

Causal  

GWAS_edu 

PGS 

MTAG_10K

_eduPGS 

MTAG_Lead 

eduPGS 
 

 

Cognitive 

Ability 

1 

(506) 

     

 

Parental 

Education 

.287*** 

(500) 

1 

(507) 

    
 

Putative 

Causal_edu 

PGS 

.085 

(506) 

.084 

(507) 

1  

(515) 

   

 

GWAS_edu 

PGS 

.291*** 

(506) 

.281*** 

(507) 

.195*** 

(515) 

 

1 

(515) 

  

 

MTAG_10K_

eduPGS 

.293*** 

(506) 

.330*** 

(507) 

.255*** 

(515) 

.695*** 

(515) 

1 

(515) 

 
 

MTAG_Lead_

PGS 

.302*** 

(506) 

.334*** 

(507) 

.295*** 

(515) 

.693*** 

(515) 

.868*** 

(515) 

1 

(515)  

        

Note: *p < .05, **p <.01, ***p <.001. 

Table S4. Pairwise Correlations Between Cognitive Ability and Education/Intelligence 

Related Polygenic Scores among European-Americans. 

 
Cognitive 

Ability 

Parental  

Education 

Putative 

Causal  

GWAS_edu 

PGS 

MTAG_10K

_eduPGS 

MTAG_Lead 

eduPGS 
 

 

Cognitive 

Ability 

1 

(4914) 

     

 

Parental 

Education 

.297*** 

(4886) 

1 

(4909) 

    
 

Putative 

Causal_edu 

PGS 

.058*** 

(4914) 

.094*** 

(4909) 

1 

(4939) 

   

 

GWAS_edu 

PGS 

.226*** 

(4914) 

.306*** 

(4909) 

.217*** 

(4939) 

1 

(4939) 

  
 

MTAG_10K_

eduPGS 

.227*** 

(4914) 

.288*** 

(4909) 

.315*** 

(4939) 

.646*** 

(4939) 

1 

(4939) 

 
 



MTAG_Lead_

PGS 

.210*** 

(4914) 

.249*** 

(4909) 

.348*** 

(4939) 

.575*** 

(4939) 

.837*** 

(4939) 

1 

(4939)  

        

Note: *p < .05, **p <.01, ***p <.001. 

Table S5. Pairwise Correlations Between Cognitive Ability and Education/Intelligence 

Related Polygenic Scores among European-African Americans. 

 
Cognitive 

Ability 

Parental  

Education 

Putative 

Causal  

GWAS_edu 

PGS 

MTAG_10K

_eduPGS 

MTAG_Lead 

eduPGS 
 

 

Cognitive 

Ability 

1 

(228) 

     

 

Parental 

Education 

.391*** 

(227) 

1 

(230) 

    
 

Putative 

Causal_edu 

PGS 

.170* 

(228) 

.201* 

(230) 

1 

(232) 

   

 

GWAS_edu 

PGS 

.302*** 

(228) 

.400*** 

(230) 

.276*** 

(232) 

1 

(232) 

  
 

MTAG_10

K_eduPGS 

.308*** 

(228) 

.381*** 

(230) 

.453*** 

(232) 

.734*** 

(232) 

1 

(232) 

 
 

MTAG_Lea

d_PGS 

.312*** 

(228) 

.409*** 

(230) 

.462*** 

(232) 

.736*** 

(232) 

.895*** 

(232) 

1 

(232)  

        

 Note: *p < .05, **p <.01, ***p <.001. 

Table S6. Pairwise Correlations Between Cognitive Ability and Education/Intelligence 

Related Polygenic Scores among African-Americans. 

 
Cognitive 

Ability 

Parental  

Education 

Putative 

Causal  

GWAS_edu 

PGS 

MTAG_10K

_eduPGS 

MTAG_Lead 

eduPGS 
 

 

Cognitive 

Ability 

1 

(2179) 

     

 

Parental 

Education 

.256*** 

(2140) 

1 

(2180) 

    
 

Putative 

Causal_edu 

PGS 

.031 

(2179) 

.025 

(2180) 

1  

(2228) 

   

 



GWAS_edu 

PGS 

.044* 

(2179) 

.032 

(2180) 

.134*** 

(2228) 

 

1 

(2228) 

  

 

MTAG_10K_

eduPGS 

.112*** 

(2179) 

.119*** 

(2180) 

.227*** 

(2228) 

.482*** 

(2228) 

1 

(2228) 

 
 

MTAG_Lead_

PGS 

.095*** 

(2179) 

.117*** 

(2180) 

.266*** 

(2228) 

.451*** 

(2228) 

.800*** 

(2228) 

1 

(2228)  

        

Note: *p < .05, **p <.01, ***p <.001. 
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Supplementary File 4 for “More Research Needed: There is a Robust Causal vs. Confounding 

Problem for Intelligence-associated Polygenic Scores in Context to Admixed American 

Populations”:  

1. Detailed Path Analysis Results 

While fitting cross-sectional data to a path model cannot prove the causal assumptions, 

doing so can provide estimates of the effect magnitudes on the assumption that the model is 

correct (Bollen & Pearl, 2013). As such, we depict two sets of path model results fit with the 

lavaan R package (Rosseel, 2012). Table S1 shows the path estimates for Hispanics with 

European ancestry, color, and eduPGS as covariates. Table S2 shows the path estimates for the 

same model as above but using the complete sample. As an alternative model, Table S3 shows 

the path estimates for Hispanics with European ancestry, Parental Education, and eduPGS as 

covariates. Table S4 shows the path estimates for the same model as above but using the 

complete sample. 

Table S1. Detailed Results for the Path Diagram between European Ancestry, Color, eduPGS, 

and g for Hispanics. 

   Unstandardized 

Estimate 

S.E. P value  Lower 

 95% CI 

Upper 

95% CI 

Standardized 

Estimate 

EUR ➜   g 0.924 0.260 0.000 0.414 1.433 0.256 

EUR ➜   eduPGS 2.442 0.168 0.000 2.112 2.773 0.591 



eduPGS ➜   g 0.200 0.051 0.000 0.101 0.299 0.229 

Skin 

Color 

➜ 

 

  g 0.117 0.075 0.118 -0.030 0.264 0.098 

EUR ➜   Skin  

Color 

-2.032 0.114 0.000 -2.256 -1.809 -0.670 

Skin 

Color 

~   eduPGS 0.009 0.032 0.774 -0.054 0.073 0.015 

Note: EUR = European ancestry. Tilde designates covariance. 

Table S2. Detailed Results for the Path Diagram between European Ancestry, Color, eduPGS, 

and g for the Combined Sample. 

   Unstandardized 

Estimate 

S.E. P value Lower 

95% CI 

Upper 

95% CI 

Standardized 

Estimate 

EUR ➜ G 0.718 0.079 0.000 0.563 0.872 0.232 

EUR ➜ eduPGS 2.384 0.032 0.000 2.320 2.447 0.688 

eduPGS ➜ G 0.222 0.014 0.000 0.194 0.250 0.248 

Skin 

Color 

➜ 

 

G -0.001 0.026 0.983 -0.051 0.050 0.000 

EUR ➜ Skin 

Color 

-2.404 0.018 0.000 -2.440 -2.369 -0.865 



Skin 

Color 

~ eduPGS -0.008 0.006 0.176 -0.019 0.004 -0.017 

Note: EUR = European ancestry. Tilde designates covariance. 

Table S3. Detailed Results for Path Diagram with Parental Education for Hispanics. 

   Unstandardized 

Estimate 

S.E. P value Lower 

95% CI 

Upper 

95% CI 

Standardized 

Estimate 

EUR ➜ G 0.727 0.193 0.000 0.348 1.105 0.188 

EUR ➜ eduPGS 2.162 0.144 0.000 1.881 2.443 0.559 

eduPGS ➜ G 0.123 0.051 0.016 0.023 0.224 0.123 

Parental  

Education 

➜ 

 

G 0.225 0.049 0.000 0.129 0.320 0.201 

EUR ~ Parental  

Education 

0.071 0.013 0.000 0.044 0.097 0.242 

Parental  

Education 

~ eduPGS 0.217 0.042 0.000 0.135 0.299 0.232 

Note: EUR = European ancestry. Tilde designates covariance. 

Table S4. Detailed Results for Path Diagram with Parental Education for the Combined Sample. 

   Unstandardized 

Estimate 

S.E. P value Lower 

95% CI 

Upper 

95% CI 

Standardized 

Estimate 

EUR ➜ G 0.621 0.041 0 0.539 0.702 0.2 

EUR ➜ eduPGS 2.149 0.027 0 2.096 2.202 0.666 



eduPGS ➜ G 0.147 0.013 0 0.121 0.172 0.153 

Parental  

Education 

➜ 

 

G 0.286 0.012 0 0.261 0.31 0.254 

EUR ~ Parental 

Education 

0.145 0.004 0 0.137 0.154 0.401 

Parental  

Education 

~ eduPGS 0.203 0.009 0 0.185 0.221 0.232 

Note: EUR = European ancestry. Tilde designates covariance. 

2. Vectors Vector Correlations for MCV analysis   

The Method of Correlated Vectors (MCV) involves correlating two vectors containing 

subtest related effects (e.g., subtest heritability and subtest g-loading).  Table S5 shows the 

subtest correlations used for this analysis. Table S6 shows the SIRE scores, which were used to 

calculate vectors of standardized group differences. 

Table S5. Rounded Correlation Vectors for the Method of Correlated Vector Analysis. 

______________________________________________________________________________ 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Test g 

loadings 

Anc.  

r 

Anc.   

r HI 

Anc.  

r AA 

PGS  

r 

PGS EA 

r 

PGS HI 

r 

PGS AA 

r 

h2 

PLOT* 0.63 0.12 0.25 0.10 0.16 0.13 0.25 0.10 0.30 

PCPT* 0.32 0.07 0.06 0.01 0.11 0.09 0.09 0.00 0.33 

PCET* 0.45 0.09 0.19 0.01 0.11 0.08 0.20 0.01 0.06 



LNB* 0.50 0.08 0.12 0.04 0.12 0.11 0.09 0.02 0.28 

VOLT* 0.43 0.09 0.15 0.04 0.10 0.09 0.09 0.04 0.26 

TAP 0.33 0.00 0.04 0.04 0.04 0.03 0.14 0.06 0.31 

PMAT* 0.63 0.10 0.22 0.05 0.18 0.16 0.24 0.10 0.38 

MP 0.27 0.02 0.04 0.01 0.04 0.03 0.05 0.01 0.18 

PEDT 0.46 0.04 0.05 0.06 0.05 0.05 -0.02 0.05 0.26 

PVRT* 0.71 0.17 0.23 0.07 0.23 0.19 0.24 0.10 0.47 

PEIT 0.33 0.00 0.06 0.01 0.00 0.00 0.00 0.04 0.32 

PFMT* 0.25 -0.02 0.02 0.01 0.01 0.01 0.02 0.01 0.42 

PADT 0.39 0.01 0.03 0.04 0.03 0.04 -0.03 0.02 0.14 

PWMT* 0.39 0.04 0.06 0.03 0.07 0.07 -0.04 0.03 0.21 

WRAT* 0.63 0.14 0.27 0.06 0.25 0.22 0.28 0.12 0.70 

______________________________________________________________________________ 

Note: (1) Subtest g-loading, (2) correlation between subtest scores and European ancestry (combined sample), (3) 

correlation between subtest scores and European ancestry (Hispanic sample), (4) correlation between subtest scores 

and European ancestry (African sample), (5) correlation between subtest scores and eduPGS (combined sample), (6) 

correlation between subtest scores and eduPGS (European sample), (7) correlation between subtest scores and 

eduPGS (Hispanic sample), (8) correlation between subtest scores and eduPGS (African sample), average 

heritability based on the European and African American samples. *Denotes that the subtests were used in 

computing g scores. 

Table S6. General Intelligence (g) and Subtest Means and Standard Deviations for European 

(EA), European-African (EA-AA), African (AA), and Hispanic (HI) Americans. 

______________________________________________________________________________ 

 EA  EA-AA  AA  HI  

g 0.00 1.01 -0.14 1.05 -1.01 1.07 -0.57 1.13 

PLOT* -0.01 1.00 -0.22 0.96 -0.71 0.96 -0.36 1.04 



PCPT* 0.00 1.00 -0.04 1.03 -0.33 1.16 -0.26 1.26 

PCET* 0.00 1.00 0.03 0.97 -0.45 1.08 -0.26 1.08 

LNB* 0.00 1.00 -0.02 0.98 -0.47 1.18 -0.29 1.12 

VOLT* 0.00 1.00 -0.09 0.96 -0.35 1.11 -0.27 1.06 

TAP 0.00 1.00 0.04 1.07 -0.07 1.06 0.02 0.98 

PMRT* 0.01 1.00 -0.06 1.05 -0.56 0.94 -0.25 0.98 

MP 0.00 1.00 -0.16 1.10 -0.11 1.04 -0.07 1.18 

PEDT 0.00 1.01 -0.06 0.95 -0.15 1.16 -0.15 1.09 

PVRT* 0.00 1.00 -0.15 1.07 -0.98 1.13 -0.58 1.18 

PEIT -0.01 1.01 -0.02 1.07 -0.05 1.10 0.02 1.02 

PFMT* -0.01 1.00 0.10 1.03 -0.04 1.08 0.06 1.04 

PADT 0.00 1.01 -0.06 0.93 0.00 1.12 -0.06 1.02 

PWMT* 0.00 1.01 0.07 1.03 -0.17 1.23 -0.11 1.16 

WRAT* 0.00 1.00 -0.13 1.08 -0.85 0.95 -0.48 1.05 

______________________________________________________________________________

Note: *Denotes that the subtests were used in computing g scores. 
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Supplementary File 5 for “More Research Needed: There is a Robust Causal vs. Confounding 

Problem for Intelligence-associated Polygenic Scores in Context to Admixed American Populations”:  

 

Evaluation of Bias and Validity Using the 1000 Genomes Populations 

 

 Since ascertainment bias and confounding related to population stratification is of 

significant concern, we ran supplementary analyses which leveraged the 1000 Genomes data 

to explore the effects of score construction on the magnitudes of population differences.  

1.1 Population-GWAS vs. Within family Weights 

PGS scores are calculated by weighting the trait-associated SNP allele frequencies by 

each SNP’s effect on the predicted trait (i.e., the SNP βs). However, population structure may 

bias both the βs and SNP selection. This form of bias can be partially circumvented by using 

βs calculated from within-family analyses, which are robust to the effects of population 

structure (Sohail et al., 2019). However, using only within-family Betas does not completely 

address the problem of population stratification, since there could be bias due to SNP 

selection (Zaidi and Mathieson, 2020). In this analysis, we compare the differences between 

eduPGS computed with (1) population-GWAS vs. (2) population-GWAS SNPs & within 

family βs weights vs. (3) within family SNPs & within family βs weights. 

To examine the impact of using population-GWAS versus within family Beta weights, we 

created eduPGS for both CEU and YRI individuals using the Population-GWAS Betas and 

the within-family Betas. We further decomposed the scores by ancestral and derived status. 

Next, we extended the population-GWAS versus within family Beta weights to all 1000 

Genomes European and African populations.  Finally, to address the concern raised by Zaidi 

and Mathieson (2020), we computed eduPGS based on both within family SNPs and within 

family βs weights. 

1.2 Methods 

Lee et al. (2018) report the βs for the 10k MTAG SNPs based on their analysis of 1.1 

million (mostly) unrelated individuals. The predicted traits were cognitive ability, self-
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reported math ability, and highest math class taken.  On request, the authors also provided the 

βs for their analysis of 22,000 sibling pairs. The predicted trait was self-reported years of 

education. As Lee et al. (2018) note, these within-family estimates are smaller than the 

corresponding estimates from the population GWAS. The authors explore different reasons 

for this (Suppl. Note  pp. 21-38) and reason that the lower validity is likely due in part to a 

within-family reduction of gene-by-environmental correlation.  

We first computed population-GWAS and within family Beta weighted eduPGS for 

the 1000 Genomes Northern and Central European descent from Utah (CEU) and Yoruba 

Nigerian (YRI) samples. This was done separately for each individual, so we could get means 

and standard deviations. We used Europeans and Africans because the ancestral populations 

of the admixed groups were primarily European and African in origin. Before computing 

eduPGS, we filtered the 10k MTAG SNPs to those for which both population-GWAS and 

within family βs were available; thus the population-GWAS and the within family Beta 

weighted eduPGS use the same set of SNPs. Moreover, the SNPs were filtered for MAF 

>0.01 for both CEU and YRI. We then repeated this analysis for the 5 unadmixed European 

and 5 unadmixed African 1000 Genomes populations, using the same method as above. 

Finally, we computed within family weighted eduPGS based on the 4,413 within family 

SNPs that had a p-value < .05, using the same MAF filter as above. 

1.3 Results 

Figure S1 and S2 depict, respectively, the population-GWAS and within family 

weighted eduPGS for CEU and YRI individuals. The difference in betas came to β = 1.66 and β = 

1.18, respectively. (Note, these βs are based on total sample SDs, which are larger than the average of 

the within population SDs). In both cases, the differences were highly significant and large by 

conventional interpretative standards.  This difference between the two represents a 29% reduction in 

the eduPGS gap size. For comparison, Lee et al. (2018) report that the within-family effect sizes are 
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40% smaller than the population-GWAS ones (among Europeans). Thus, this magnitude of 

reduction in gap size is consistent with the reduction in validity among Europeans. 

Figure S1: Plot of population-GWAS Weighted, MTAG SNP eduPGS for CEU and YRI 1000 

Genomes Individuals. 
 

 

Figure S2: Plot of Within-family, Weighted MTAG SNP eduPGS for CEU and YRI 1000 

Genomes Individuals. 
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 Further, Table S1 gives the eduPGS means for all 10K MTAG SNPs, for the derived 

SNPs, and for the ancestral SNPs. For all sets, the differences are significant and large, as 

determined using Welch’s Two Sample t-test. 

Table S1. Mean MTAG-based PGS for CEU and YRI Calculated using population-GWAS and 

Within Family Betas. 

  W/ population-

GWAS 

  W/ Within Family 

Betas 

  

  CEU (N = 99) YRI (N = 108) CEU (N = 99) YRI (N = 108) 

All SNPS 0.866 -0.794 0.614 -0.563 

p-value (Welch’s Two 

Sample t-test) 

  < 0.0001   < 0.0001 

Derived SNPs 0.938 -0.860 0.702 -0.643 

p-value (Welch’s Two 

Sample t-test) 

  < 0.0001   < 0.0001 

Ancestral SNPs 0.605 -0.554 0.528 -0.484 

p-value (Welch’s Two 

Sample t-test) 

  < 0.0001   < 0.0001 
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Note: SNPs were filtered for MAF >0.01 for both CEU and YRI. Scores represent standard scores calculated 

using the standard deviation in the total sample. Sample sizes for the t-test were N = 99 for CEU and N=108 for 

YRI. 

 

We next computed the MTAG-based PGS for the 5 African and 5 European 1000 Genomes 

populations.  These results are shown below in Table S2.  As seen in Table S2, there are large 

eduPGS differences between the 1000 Genomes European and African populations.  The 

European-African difference in betas for population-GWAS and within family weighted MTAG 

PGS came to β = 1.66 and β = .93, respectively. This difference between the two represents a 44% 

reduction in the eduPGS gap size. Note, the standardized scores were computed using the total 

sample, so the scores for CEU and YRI are different in Table S1 (with 2 populations) than in 

S2 (with 10 populations); also, the standard deviations (within populations) is less than 1.0, 

because a significant portion of the variance was between populations, so the β difference is 

not an effects size which uses average or pooled SDs.   

Table S2. Mean MTAG-based PGS for European and African 1000 Genomes populations 

calculated using population-GWAS and Within Family Betas. 

__________________________________________________________________________________ 

        

 

Population N 

 MTAG SNP 

Frequencies 

(Unweighted)    

M SD 

 MTAG Standard 

Scores 

(population-

GWAS Weights) 

M SD 

MTAG Standard 

Scores (Within 

Family Weights) 

M SD 

        

CEU 99 0.510 0.0063 0.800 0.6550 0.707 0.7530 

FIN 99 0.510 0.0105 0.876 0.8480 0.345 1.0700 

GBR 91 0.509 0.0064 0.694 0.6310 0.498 0.8080 

IBS 107 0.511 0.0059 0.949 0.6440 0.359 0.7670 

TSI 107 0.509 0.0055 0.806 0.5560 0.439 0.8120 

EUR_Average 503 0.510 0.0071 0.829 0.6723 0.467 0.8488 

        

YRI 108 0.494 0.0040 -0.768 0.3740 -0.365 0.7240 

ESN 99 0.492 0.0043 -0.839 0.4200 -0.405 0.7100 

GWD 113 0.493 0.0039 -0.795 0.4010 -0.553 0.6660 

LWK 99 0.492 0.0055 -0.839 0.4740 -0.522 1.4900 

MSL 85 0.492 0.0040 -0.919 0.3930 -0.484 0.6990 

AFR_Average 504 0.493 0.0044 -0.827 0.4133 -0.466 0.9107 

__________________________________________________________________________________ 
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Note: SNPs were filtered for MAF >0.01 for both CEU and YRI. Scores represent standard scores calculated 

using the means and standard deviation in the total sample. Note also, populations SDs are less than 1 because 

these SDs include only within-population variance.  

 

Further, to see if use of MTAG SNPs were biasing the results, we computed the differences 

using the 4,413 within-family SNPs that had a p-value < .05 along with the within family 

weights. These thus are pure within-family based eduPGS and so should show no population 

structure related bias. The βs for CEU and YRI were 0.529 and -.485, respectively with a β 

difference of 1.01. Results are shown in Figure S3.  

Figure S3: Plot of Within-family Weighted, Within-Family SNP eduPGS for CEU and YRI 

1000 Genomes Individuals. 

 

 

1.4 Interpretation: Population-GWAS vs. Within family EduPGS 

Though reduced in size, the within-family weighted eduPGS differences remain large. 

Moreover, this magnitude of reduction is roughly consistent with the reduced effect sizes that within-

family eduPGS have, as compared to population-GWAS ones (among Europeans). Generally, the 

differences are unlikely to be due to population structure-related bias in the SNP βs. Moreover, they 
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are unlikely to be due completely to population structure-related to SNP selection, since 

differences were substantial when using both within family weights and SNPs.   

2.1 Trans-Ethnically Concordant Betas  

 

Previous polygenic selection studies have applied European GWAS βs to different 

world populations (e.g., Berg and Coop, 2014). In theory, however, taking into account 

information about population-specific effects (i.e., βs for both European and non-European 

comparison samples) should yield more accurate results both on the individual and 

population levels (Márquez-Luna et al., 2017; Grinde et al., 2018). Indeed, the PGS βs for 

SNPs in European samples will often show opposite or discordant effects in non-European 

samples. Since SNPs which show directionally concordant effects across ethnic groups are 

more likely to be causal (when individual differences are caused by variants common across 

ethnic groups), computing PGS using SNPs with only concordant effects may either increase 

or decrease apparent eduPGS gaps. 

Given this, it has been argued that including SNPs with transracially discordant 

effects may bias the group differences and so that “the polygenic scores should be computed 

only from those GWAS hits that have directionally consistent effects in the races that are 

being compared” (Thompson, 2019).  Thus, for this analysis, we use the two largest TCP 

samples, European and African Americans, to classify MTAG βs into trans-ethnically 

concordant and discordant ones. We then recomputed concordant and discordant eduPGS and 

compared the magnitude of the 1000 Genomes CEU and YRI differences.  

2.2 Method 

Using the TCP sample, we computed the 10k MTAG SNP betas for g separately for 

European and African Americans.  These results are provided in the supplementary excel file. 

The 10k MTAG SNPs were then split into two sets: 1) concordant SNPs, which had the same 

direction of effect for TCP African and European Americans and 2) discordant SNPs, which 
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had opposite directions for TCP African and European Americans. Polygenic scores were 

then computed for the concordant SNPs only and the discordant SNPs only. In computing the 

eduPGS, the SNPs were weighted with the βs reported by Lee et al. (2018). The rationale was 

that GWAS βs are more reliable than the TCP βs because they are based on a much larger 

sample size, thus TCP data is only used to identify concordant / discordant SNPs status. For 

comparison, eduPGS were additionally computed, with the same weights, based on all 10k 

MTAG SNPS. 

2.3 Results 

There were 4,307 and 3,994 concordant and discordant SNPs, respectively. This 

suggests there is a slight overrepresentation of concordant SNPs. The binomial probability of 

having 4,307 or more discordant SNPs out of 8,301 is p = 0.0003. Table S3 reports the 

eduPGS based on all SNPs, the concordant only, and discordant only. 

As shown in Table S4, the differences were largest in the trans-ethnically concordant 

SNPs. In line with the results from 4.1, the discordant PGS showed no CEU-YRI difference 

(95% C.I. = -0.009, 0.005), while the concordant CEU-YRI difference was around 3% (95% 

C.I. = 0.025, 0.039). Thus, the presence of discordant variants may possibly be masking 

CEU-YRI differences as would be the case if individual differences were caused by variants 

common across ethnic groups and, also, if the transethnic differences were larger for 

causally-relevant SNPs. However, again, this issue will have to be reevaluated when SNP 

effect sizes based on larger non-European samples are available. At present, we can only say 

that given the data available, the eduPGS differences are not inflated as a result of inclusion 

of SNPs with transethnically discordant effects.  

Table S3. Concordant, Discordant, and “Naive” PGS Frequencies by Population.  

Population PGS 10k MTAG PGS concordant PGS discordant 

CEU 0.5063  0.5050 0.5093 

YRI 0.4904 0.4726 0.5109  

Difference (CEU - YRI) 0.0159  0.0325  -0.0016 
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Table S4. Results of t-test for PGS Frequency CEU-YRI difference. 

 T P-value 95% CI for Mean 

Difference 

Df 

PGS 10k MTAG 6.288 3.37*10-10  0.0109, 0.0208 8418 

PGS concordant 9.013 2.2*10-16  0.0254, 0.0395 4305 

PGS discordant -0.453 0.651 -0.0088, 0.0055 3993 

Note: Sample sizes for the t-test were the number of concordant and discordant SNPs. Using the number of 

individuals, instead, did not change the interpretation of the results.   

 

2.4 Interpretation  

The concordant PGS had a higher CEU-YRI difference than both the discordant PGS 

and the combined eduPGS. In fact, the discordant PGS showed no CEU-YRI difference (95% 

C.I. = -0.009,  0.005), while the concordant CEU-YRI difference was around 3% (95% C.I. = 

0.025, 0.039). A two-way ANOVA showed this interaction to be significant. Generally, the 

results from this analysis are consistent with the hypothesis that the ability of the MTAG 

eduPGS to predict population differences in IQ and scholastic achievement is driven by the 

subset of SNPs with trans-ethnically homogeneous effects and that the discordant SNPs reduce 

the magnitude of the polygenic score differences. However, it needs to be noted that the power 

to correctly classify SNPs was low, so this analysis will have to be repeated when better data 

is available.  

3.1. Cross-population Validity    

Cross-population analyses are frequently used to assess the validity of PGS (e.g., Berg 

et al., 2019, Figure 1; Sohail et al., 2019; Figure 4). At times, it is found that PGS differences 

are directionally inconsistent with observed trait differences across populations.  When this is 

found, the cross-population validity of the PGS is called into question (e.g., Martin et al., 2017). 

Thus, in the third analysis, we compared the cross-population predictivity for measured 

population IQ / test scores. In addition to 10K MTAG and MTAG-lead eduPGS, we look at the 

relation by concordant and discordant status, as it is expected that the discordant 10K MTAG 
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eduPGS will be less predictive than the concordant one, as found on the individual level. 

Moreover, we examine if eduPGS computed from Lee et al.’s (2018) sibling analysis data 

predicts national cognitive scores. To do so, we computed eduPGS both using all 81,130 

within-family SNPs and the 4,413 within-family SNPs that had a p-value < .05. Note, while 

sibling analyses are robust to population structure-related confounding, none of these SNPs 

met the minimum for GWAS significance (5e-8) and so the eduPGS computed from them provides a 

very noisy signal.    

3.2 Methods 

The Measured population cognitive scores for 18 countries were copied from Lynn and 

Becker (2019) and World Bank (2017). EduPGS were calculated for the 26 1000 Genomes 

populations, using the 10K MTAG, MTAG-lead SNPs, the concordant and discordant 10K 

MTAG SNPs, and within-family based weighted SNP frequencies. The latter were computed 

using all within-family SNPs along with the within family β weights. Scores for multiple ethnic 

groups were reported for four countries: USA (European, Mexican, African, and Asian-Indian 

American), UK (European, Indian, and Sri Lankan British), China (North Han, South Han, and 

Dai), and Nigeria (Esan and Yoruba). For these, eduPGS were weighted as shown in Table S6 

to create national eduPGS. Intra-national group scores were not used as 1) scores are not 

psychometrically comparable to international ones (Wicherts & Wilhelm, 2007; Täht & Must, 

2013), though when available they are reported with the sources noted, and 2) migrant 

populations can not be assumed to be representative of national ones.  

3.3. Results. 

 

Table S5 reports the descriptive statistics.  

 

Table S5: Polygenic and Cognitive Scores at the Country level 

___________________________________________________________________________ 

Population  

MTAG 

10k 
eduPGS 

MTAG 

Lead 
eduPGS 

MTAG 

Concordant 
eduPGS 

MTAG 

Discordant 
eduPGS 

Lee et al.'s 

(2018) 
Within-

Lee et al.'s 

(2018) 
Within-

Ethnic 
IQs 

Lynn & 
Becker's 

World 
Bank's 
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Family 

(All) 

Family (P 

< .05) 

(2019) 

NIQs 

(2017) Test 

Scores 
          

Afr.Car.Barbados -1.376 -1.343 -1.418 -0.219 0.0000151 0.0002438  

91.69/ 

90.15*  
Bengali Bangladesh -0.021 -0.122 0.058 -0.269 0.0000240 0.0003013  74.36 368 

Colombian  0.368 0.305 0.557 -0.614 0.0000266 0.0003316  82.99 424 

Finland  1.043 0.986 1.117 -0.187 0.0000246 0.0002973  100.55 548 
Gambian  -1.469 -1.425 -1.544 -0.115 0.0000141 0.0002370  60 338 

Iberian, Spain 0.264 0.186 0.502 -0.562 0.0000262 0.0003050  93.87 514 

Japan  0.672 0.993 0.613 0.814 0.0000242 0.0003177  106.43 563 
Vietnam  1.024 1.211 0.467 2.137 0.0000234 0.0003104  89.53 519 

Luhya, Kenya -1.513 -1.400 -1.615 -0.058 0.0000145 0.0002505  75.22 455 

Mende, Sierra Leone -1.632 -1.585 -1.672 -0.262 0.0000149 0.0002521  60 316 
Peruvian, Lima -0.500 -0.676 -0.047 -1.540 0.0000286 0.0003246  81.42 407 

Punjabi, Pakistan 0.187 0.014 0.284 -0.327 0.0000242 0.0002940  80.05 339 

Puerto Rican 0.230 0.190 0.477 -0.925 0.0000251 0.0003124  81.89  
Toscani, Italy 0.907 0.796 1.105 -0.707 0.0000263 0.0003210  94.16 514 

           
Nigeria  -1.471 -1.317 -1.637 0.203 0.0000157 0.0002475  67.83 325 
Esan, 

Nigeria 0.01 -1.545 -1.364 -1.609 -0.167 0.0000142 0.0002343 (??.??)   
Yoruba, 
Nigeria 0.2 -1.467 -1.315 -1.638 0.222 0.0000158 0.0002481 (??.??)              

USA  0.458 0.324 0.671 -0.824 0.0000268 0.0003099  97.43 523 

Utah Whites 0.63 0.924 0.748 1.139 -0.787 0.0000286 0.0003221 (100.00)   
Mexican in 

L.A. 0.11 -0.077 -0.181 0.293 -1.306 0.0000273 0.0003029 (91.45)   
US Blacks 0.13 -1.347 -1.301 -1.262 -0.664 0.0000178 0.0002575 (85.00)   
Gujarati 

Indian, Tx 0.01 0.469 0.269 0.443 0.103 0.0000225 0.0003005 (101.65)              
China  1.227 1.496 0.786 2.122 0.0000249 0.0003110  103.95 456 

Chinese, 
Bejing 0.47 1.364 1.631 0.863 2.368 0.0000260 0.0003087 (105.90)   
Chinese, 

South 0.47 1.089 1.360 0.708 1.876 0.0000238 0.0003134 (105.90)   
Chinese Dai  0.739 1.047 0.491 1.271 0.0000231 0.0003004 (93.90)              
UK  0.783 0.600 1.044 -0.960 0.0000267 0.0003086  99.22 517 

British, GB 0.82 0.790 0.609 1.060 -0.993 0.0000268 0.0003090 (100.00)   
Indian 

Telegu, UK 0.02 0.501 0.249 0.400 0.379 0.0000243 0.0002925 (??.??)   
Sri Lankan, UK 0.376 0.118 0.227 0.531 0.0000250 0.0003024 (??.??)   

 _________________________________________________________________________ 

Note: USA ethnic scores from Fuerst (2014), with second-generation “Hispanic” substituted for Mexican; 

Chinese ethnic scores from Lynn and Cheng (2014). USA eduPGS calculated as the weighted eduPGS of 

European, Mexican, African, and Asian-Indian Americans. Chinese eduPGS calculated as the weighted. 

eduPGS of North and South Han. UK eduPGS calculated as the weighted eduPGS of White and Indian 

eduPGS.Nigerian eduPGS calculated as the weighted eduPGS of Esan and Yoruba eduPGS (??.??) indicates 

unknown intranational scores. *Lynn and Becker (2019) report an IQ of 91.69 for Barbados. However, this 

becomes 90.15 when including the 114 generation 2 sample WASI scores reported by Wabler et al. (2018). We 

use this later score.  

   

Table S6 reports the correlation matrix. As shown, the Lead SNP eduPGS has high 

predictive validity for both Lynn and Becker’s National IQs (r = .817) and World Bank’s 

Test Scores (r = .747). These values were equivalently high for the MTAG 10K eduPGS, at r 

= .804 and r = .734, respectively. As predicted, the correlations for the discordant eduPGS, 

unlike the concordant ones, were low at r = .213 (Lynn & Becker, 2019) and r = .142 (World 

Bank, 2017), respectively. The difference between the concordant (r = .784) and discordant (r 
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= .213) correlations with Lynn and Becker’s NationalIQs was significant (t =5.93, p <0.01; 

dependent samples). The within-family based eduPGS, based on all SNPS, also had lower 

validity for both Lynn and Becker’s National IQs (r = .648) and World Bank’s Test Scores (r 

= .565), as did the ones that had a p < .05, with r = .638 (Lynn & Becker, 2019) and r = .596 

(World Bank, 2017), respectively. 

Figure S6. Correlation matrix for eduPGS and Population IQs.  

__________________________________________________________________________________ 

 1 2 3 4 5 6 
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1. MTAG 10K eduPGS 1.00      
 

2. MTAG Lead eduPGS .988 (18) 1.00     
 

3. MTAG Concordant 

eduPGS .971 (18) .930 (18) 1.00    

 

4. MTAG Discordant 
eduPGS .246 (18) .371 (18) .011 (18) 1.00   

 

5. Lee et al.  (2018) Within 

Family .840 (18) .776 (18) .921 (18) -.190 (18) 1.00   

 

6. Lee et al.  (2018) Within 

Family (p < .05) .853 (18) .814 (18) .905 (18) -.063 (18) .964 (18) 1.00 

 

7. Lynn & Becker (2019) 
NIQ .804 (18) .817 (18) .784 (18) .213 (18) .648 (18) .638 (18) 

 
1.00 

8. World Bank (2017) Test 

Scores .734 (16) .747 (16) .727 (16) .142 (16) .565 (16) .596 (16) 

 

.885 (16) 

__________________________________________________________________________________ 

Note: Sample sizes in parentheses. 

 

Figure S3 shows the regression plot for NIQ and MTAG 10K eduPGS, while figure 

S4 shows the regression plot for NIQ and the within-family based eduPGS. As seen, the cross 

population validity of the within-family eduPGS is tenuous. However, this eduPGS may not 

be reliable as the within-family SNP with the lowest p value (1.877e-05) did not even meet 

the conventional minimum for GWAS significance (5e-8).  

 

Figure S3. Regression Plot for Lynn and Becker’s (2019) NIQ and MTAG 10K eduPGS Scores Based 

on 1000 Genomes Samples. 
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Figure S4. Regression Plot for Lynn and Becker’s (2019) NIQ and Within-family Based eduPGS 

Scores (Using all 81,130 SNPs) Based on 1000 Genomes Samples. 
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3.4 Interpretation 

MTAG-based eduPGS correlates highly with measured cognitive scores. Moreover, the 

population-level correlations were significantly higher for the concordant than discordant 

SNPs, consistent with the individual level results. However, the cross-population predictive 

validity for the within-family based eduPGS, calculated based on 22,000 sibling pairs, is 

tenuous, with high eduPGS for some low cognitive test scoring countries (e.g., Peru and 

Colombia). Since none of the SNPs for this eduPGS met the minimum for GWAS significance 

this may simply be a result of unreliability in the measure. In general, the cross-population 

validity of the MTAG-based eduPGS can not be rejected on the grounds that eduPGS 

differences are inconsistent with known phenotypic score differences (e.g., Martin et al., 2017). 

However, that eduPGS constructed using the smaller within-family sample shows a tenuous 

validity highlights Duncan et al.’s (2019) caution that different eduPGS can give markedly 

different results.    
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Supplementary File 6 for “More Research Needed: There is a Robust Causal vs. Confounding 

Problem for Intelligence-associated Polygenic Scores in Context to Admixed American 

Populations”:  

 

Calculating Expected Phenotypic Differences.  

 

1. Formulas 

 

The formal relation between the combined or total within and between group heritability, 

heritability between groups, and genetic and phenotypic differences is given by Defries (1972a), 

McClearn and Defries (1973), Loehlin, Lindzey, & Spuhler (1975), Cheverud (1985), Jensen 

(1998): 

 

ℎ2
G  =   ℎ2 ∗   

𝑟

𝑡
                                                                                                                              (1)                                                                                                                                     

 

where  ℎ2
G is the between group heritability,  ℎ2  is the combined or total  heritability, r is the 

genetic intraclass correlation, and t is the phenotypic intraclass correlation, which is equivalent to 

the square of the point biserial correlation (i.e., rpbs
2).  This formula can be expressed in terms of 

within groups heritability,  ℎ2
w  . In this case: 

 

ℎ2
G  =  ℎ2

w    ∗   
(1−𝑡)𝑟

(1−𝑟)𝑡
                                                                                                                  (2)                                                                                                                                       

                                                                                                                                            

where ℎ2
w  is the average of the heritabilities within both groups. Equations (1) & (2) are 

simplified, but can be expanded to include gene-environment covariance (COVGE) (Defries, 

1972b). In this case, the between group heritability is not ℎ2
G but is equal to: 

 

ℎ2
G +  hG * eG * rAGEG 

 

where hG and eG are the square root of the between groups heritability and between group 

environmentality, respectively, and rAGEG is the gene-environment correlation between groups. 

Thus, in the case of positive COVGE, equations (1) and (2) will underestimate genetic differences 

between groups (McClearn and Defries, 1973). This formula can be further expanded to include 

dominance (e.g., Wright, 1952). See the exchange between Defries and Jensen (Jensen, 1972; 

also: Jensen, 1998) for when narrow or broad-sense within groups heritability is more 

appropriate. Here we will work with the simplified equation. 

 

The intraclass correlations (r and t) can be interpreted in terms of one-way analysis of variance 

(Loehlin, Lindzey, & Spuhler, 1975), where: 

 

ICC =
𝑀𝑆b−𝑀𝑆w

𝑀𝑆𝑏 + (𝑛−1)MS𝑤
                                                                                                                    (3)                                                                                                 

 



where MSb represents the mean square between groups and MSw represents the mean square 

within groups. ICCs are equivalent to , which can be converted into Cohen’s d with the 

following equation: 

 

=
(.5𝑑)2

1 + (.5𝑑)2   or, equivalently,  𝑑 = 2√

 1− 

                                                                           (4)                                                                                                                              

where Cohen’s d is: 

 

𝑑 =
𝑀1−𝑀2

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑
                                                                                                                                   (5)                                                                                                                                         

 

and M1 and M2 are the means for group 1 and group 2, respectively and SDpooled is the pooled 

standard deviation. Alternatively, can be converted into a point-biserial correlation, and this 

can be converted into Cohen’s d with the following equation:  

 

rpbs = 
𝑑

√(𝑑2
 
+ 4 )

    or, equivalently,  d =   
2𝑟

√(1−𝑟2
 
)
                                                                            (6)                                                                                    

 

For diploid populations, r, the genetic intraclass correlation, in equation (1) and (2), is: 

 

r = 2Fst / (1+ FIT)                                                                                                                            (7)                                                                                                                       

 

where Fst is the fixation index, or the between group variance in allele frequencies, and FIT  is the 

overall level of inbreeding in the total population (Hamilton, 1971; Cheverud, 1985; Whitlock, 

2004).  

 

Contrary to what is often thought, the upper bounds of Fst is typically  < 1 (Alcala & Rosenberg, 

2017; Alcala & Rosenberg, 2019). Importantly, Fst is mathematically constrained by the 

frequency M of the most frequent allele and thus total genetic variance. Thus, Fst is not on the 

variance scale of 0 to 1 and so is not analogous to ICCs which represent the total portion of 

variance out of 1. In light of this, Alcala & Rosenberg (2017) proposed the ratio Fst/Fst_max, 

which ranges from 0 to 1. To correct for the mathematical constraints and place Fst on a variance 

metric, we can follow (Alcala & Rosenberg, 2017) and create a corrected value, Fst _c: 

 

Fst _c = Fst  / Fst _max                                                                                                                      (8)                                                                                                                                   

 

The corresponding corrected genetic intraclass correlation, rc , is: 

 

rc = 2 Fst_c/ (1+ FIT)                                                                                                                        (9)                                                                                                                                                                                                                                              

 

Based on the equations for M provided by Alcala & Rosenberg (2017), the Fst_c  

~ .7, in Table 10 for the pairwise comparisons. However, the values will depend on the subset of 

populations and SNPs used. There are other concerns with common Fst estimators, given 

assumptions about population structure (Ochoa & Storey, 2021). These assumptions can lead to 

underestimations of the coefficient of relatedness, which r represents (DeFries, 1972a), in 



context to admixture (Ochoa & Storey, 2019). However, we will proceed with Weir and 

Cockerham's estimator. 

 

Now, equation (2) can be rearranged to solve for t (the phenotypic variance). This gives: 

 

𝑡 =  ℎ2
w    ∗   

𝑟

ℎ2
G − 𝑟ℎ2

G + 𝑟ℎ2
w  

                                                                                                   (10)                                                                                                                    

Based on equation (10), one can solve for the expected gap, where environments are equal, 

which is done by setting ℎ2
G to 1. This gives the following: 

 

𝑡expected  =  ℎ2
w    ∗   

𝑟

1 − 𝑟 + 𝑟ℎ2
w
                                                                                                   (11)                                                                                                                                                                                  

Using equation (1), with the total heritability instead of within groups heritability, (11) is simply:                                                               

𝑡expected  =   ℎ2 ∗   𝑟                                                                                                                      (12)                                                                                                                             

 

Equation (12) can be related to the equation for expected differences given by Turkheimer (1991, 

eq. 6), where: 

P1observed = √ℎ2  Ĥ1 + √𝑒2  Ê1   and   P2observed = √ℎ2  Ĥ2 + √𝑒2  Ê2                                    (13)                                                                                    

 

and P1  and P2 are the standardized observed phenotypic values for group 1 and group 2, 

respectively and Ĥ and Ê are the standardized genetic and environmental values for the 

respective groups.  

 

When Ê1 =  Ê2  (and thus ℎ2
G = 1), then:                                                                                                                                                                                                                                                                                                                                                                                   

 

  P1 – P2 = √ℎ2
w (Ĥ1− Ĥ1) 

 

And so, in terms of standardized phenotypic (dp expected) and genetic (dg) differences: 

 

dP expected  = √ℎ2
w  * dg                                                                                                                (14)                                                                                                             

 

With formula (6), we can convert the standardized differences (dp and dg) into point-biserial 

correlations, yielding: 

 

𝑟pbs_phenotypic expected   =  √ℎ
2

∗  𝑟pbs_genetic                                                                                         (15) 

                                                     

Squaring both sides, recaptures equation (12), since the genetic intraclass correlation (r) and the 

phenotypic intraclass correlation (t) are equivalent to the square of the point biserial correlation. 

From the above, it can also be seen that the 𝑑p expected  or the “genotypic gap” is equal to √ ℎ2
G * 

dobserved, where the √ ℎ2
G can be interpreted as the correlation between phenotype and genotype 

between groups, i.e.: 

 



𝑑expected =  √ℎ2
G ∗  𝑑observed                                                                                                                                                             (16)                                                                                                                    

 

This is because we can rewrite equation (1) as: 

 

ℎ2
G ∗ 𝑡 =  ℎ2    ∗   𝑟                                                                                                                     (17)                                                                                                                                           

 

Taking the square root of both sides, gives:  

                                                     

√ℎ
2

G ∗  𝑟pbs_phenotypic =  √ℎ
2

  ∗     𝑟pbs_genetic                                                                                   (18)     

                                                

 

And from equation (15), we see that the left hand is equal to 𝑟pbs_phenotypic expected . 

      

Equation 1 and 2 can be rewritten to solve for 𝑒2
G, the between group environmentality. This is 

just 1- ℎ2
G, thus:  

 

𝑒2
G =  1 −  ℎ2

G  =   1 −  ℎ2 ∗   
𝑟

𝑡
                                                                                               (19)                                                                                                                                                                                                                                    

 

To note, while, 𝑒2
G and ℎ2

G sum to 1, the expected differences on account of genes and 

environment, when expressed in standard deviations, will not sum to the phenotypic gap. This is 

because standard deviations are a linear measurement, and do not express differences in variance 

units (Jensen, 1998). Rather, to add the effects, one has to take the square root of the sum of the 

squared differences. The formula is: 

 

d phenotypic = √(𝑑_genetic)^2  + (𝑑_environmental)^2                                                            (20)                                                  

 

For example, in a case where the phenotypic differences is 1 (t = .20), the within groups 

heritability is .50, and r = .20, 𝑒2
G = .5 and ℎ2

G = .5. By equation (14), the effect owing to 

environment will be √. 5 ∗ 15 = .71 SD or 10.6066 IQ points. And the effect owing to genes 

will be the same; this is also the expected difference given by equation (9).  The phenotypic 

difference is recovered with equation (19), as √10.6066^2 + 10.6066^2 = 15. 

                                                    

From the above, it is obvious that ℎ2
G is not equal to the real-world percentage of the differences 

which, owing to genes, would remain when the environments were equalized. The inference 

makes the R2 interpretative fallacy (Hunter & Schmidt, 2004), which results because variance-

explained does not represent a linear relation between x and y. Rather expected percentage 

genetic, in the ordinary sense, is given by: 

 

Percentage genetic expected =    𝑑expected   / dobserved                                                                    (21)                                                                                                                                               

 

 

Example: 

 



Using the Education SNP Fst values in Table 1, calculate the expected differences owing to genes 

for Africans and Europeans, assuming within groups heritabilities of .20 to .80. 

 

Table 1. Fst Values for the 10k MTAG eduSNPs by 1000 Genomes Population Pairs. 

______________________________________________________________________________ 

 

Population_1 Population_2 Edu_Fst 
 

Edu_Fit 

AFR EAS 0.1402 
 

0.1470 

AFR EUR 0.1090 
 

0.1153 

AFR SAS 0.1018 
 

0.1125 

AFR AMR 0.0984 
 

0.1160 

EAS EUR 0.0964 
 

0.1030 

AMR EAS 0.0714 
 

0.0899 

EAS SAS 0.0626 
 

0.0741 

EUR SAS 0.0342 
 

0.0451 

AMR SAS 0.0296 
 

0.0528 

AMR EUR 0.0226 
 

0.0412 

_____________________________________________________________________________ 

Note: AFR = African, EAS = East Asian, SAS = South Asian, Eur = European, and AMR = 

admixed American (Mexican, Puerto Ricans, Colombian, and Peruvian) populations.  

 

For Africans (AFR) and European (EUR), the MTAG SNPS the Fst = .1090. By equation (7), r = 

2(.1090) /(1+.1153) = .1955. Given a ℎ2
w = .5, then texpected from equation (9) is: 

 

texpected  =    .5   *  
.1955 

(.1955)(.5) + 1 − (.1955)
       =    .1083                                                

Given equations (3) and (4), this equals d =  0.70 or a 10.46 point difference on a metric with a 

standard deviation of 15.  

Heritability estimates are population specific. For example, in there meta-analysis, Polderman et 

al. (2015), Table 2, give twin correlations by age. Using Falconer's formula, these convert into 

H2s of .46 at 0 to 11 years of age and 0.80 at 18 to 64 years. Since estimates of h2 and H2 are 

population specific, since the specific genetic variance components (e.g., additive, GE 

covariance, dominance) are often not known, and since there may be disagreements on how to 

correct Fst , one can provide a table for the different possibilities, given Fst = .1090. This is shown 

in Table 2.  



Table 2. BGH and Expected Variance and IQ point difference Given Different Values of r and 

H2.  

______________________________________________________________________________ 

H2 Fst r t_observed BGH t_expected d_expected 

Expected 

IQ point 

difference 

Cohen's 

Interpretation 

0.20 0.1090 0.1955 0.2000 0.194 0.0463 0.4409 6.61 Medium 

0.35 0.1090 0.1955 0.2000 0.340 0.0784 0.5833 8.75 Medium 

0.50 0.1090 0.1955 0.2000 0.486 0.1083 0.6971 10.46 Medium 

0.65 0.1090 0.1955 0.2000 0.632 0.1364 0.7949 11.92 Large 

0.80 0.1090 0.1955 0.2000 0.778 0.1628 0.8818 13.23 Large 

         

H2 Fst r_c t_observed BGH t_expected d_expected 

Expected 

IQ point 

difference 

Cohen's 

Interpretation 

0.20 0.1090 0.2792 0.2000 0.310 0.0719 0.5567 8.35 Medium 

0.35 0.1090 0.2792 0.2000 0.542 0.1194 0.7364 11.05 Medium 

0.50 0.1090 0.2792 0.2000 0.775 0.1623 0.8802 13.20 Medium 

0.65 0.1090 0.2792 0.2000 1.007 0.2011 1.0035 15.05 Large 

0.80 0.1090 0.2792 0.2000 1.240 0.2366 1.1133 16.70 Large 

______________________________________________________________________________ 

Note: see text for definition of variables.  
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